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Capsule	Summary	18 

Understanding	how	science	is	co-produced	is	a	science	unto	itself.	Using	the	case	of	19 

Project	Hyperion,	we	illustrate	how	co-production	works	(or	does	not	work)	in	practice.			20 

	 	21 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0296.1.



2 

Abstract		22 

Developing	decision-relevant	science	for	adaptation	requires	the	identification	of	23 

climatic	parameters	that	are	both	actionable	for	practitioners	as	well	as	tractable	for	24 

modelers.	In	many	sectors,	these	decision-relevant	climatic	metrics	and	the	approaches	25 

that	enable	their	identification	remain	largely	unknown.	“Co-production”	of	science	with	26 

scientists	and	decision-makers	is	one	potential	way	to	identify	these	metrics,	but	there	27 

is	little	research	describing	specific	and	successful	co-production	approaches.	This	28 

paper	examines	the	negotiations	and	outcomes	from	Project	Hyperion,	wherein	29 

scientists	and	water	managers	jointly	developed	decision-relevant	climatic	metrics	for	30 

adaptive	water	management.	We	identify	successful	co-production	strategies	by	31 

analyzing	the	project’s	numerous	back-and-forth	engagements	and	tracing	the	evolution	32 

of	the	science	during	these	engagements.	We	found	that	effective	mediation	between	33 

scientists	and	managers	needed	dedicated	“boundary	spanners”	with	significant	34 

modeling	expertise.	Translating	practitioners'	information	needs	into	tractable	climatic	35 

metrics	required	direct	and	indirect	methods	of	eliciting	knowledge.	We	identified	four	36 

indirect	methods	that	were	particularly	salient	for	extracting	tacitly-held	knowledge	37 

and	enabling	shared	learning:	developing	a	hierarchical	framework	linking	management	38 

issues	with	metrics;	starting	discussions	from	the	planning	challenges;	collaboratively	39 

exploring	the	planning	relevance	of	new	scientific	capabilities;	and	using	analogies	of	40 

other	‘good’	metrics.	The	decision-relevant	metrics	we	developed	provide	insights	into	41 

advancing	adaptation-relevant	climate	science	in	the	water	sector.	The	co-production	42 

strategies	we	identified	can	be	used	to	design	and	implement	productive	scientist-43 

decision-maker	interactions.	Overall,	the	approaches	and	metrics	we	developed	can	44 

help	climate	science	to	expand	in	new	and	more	use-inspired	directions.	 	45 
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Introduction	46 

Adaptation	practitioners	across	many	sectors,	including	resource	management,	land-47 

use	planning,	and	public	health,	urgently	need	decision-relevant	science	to	plan	for	and	48 

manage	the	impacts	of	climate	change	(ACCNRS	2015;	Moss	et	al.	2013;	Lemos	and	49 

Morehouse	2005;	Kirchhoff	et	al.	2013a;	Kerr	2011).	There	have	been	several	efforts	50 

towards	developing	actionable	(or	decision-relevant)	science	broadly,	and	more	51 

specifically	towards	providing	scientific	details	of	the	climate	impacts	that	planners	52 

need	to	account	for	(Mach	et	al.	2019;	Bremer	and	Meisch	2017;	Beier	et	al.	2017).	53 

Resource	managers,	however,	still	report	that	climate	information	that	can	help	to	54 

develop	adaptation	decisions,	is	not	readily	available	to	them	(Moss	et	al.	2019;	Barsugli	55 

et	al.	2013;	USGAO	2015;	Vogel	et	al.	2016).	This	is	partly	on	account	of	unresolved	56 

mismatches	between	scientists’	and	decision-makers’	perceptions	of	what	constitutes	57 

‘actionable’	climate	information	(Lemos	et	al.	2012;	McNie	2007).	One	important	58 

example	of	this	mismatch	is	that	current	climate	modelling	and	model	evaluation	efforts	59 

typically	focus	on	broad	climatological	metrics,	such	as	averages	or	extremes	in	60 

temperature	and	precipitation.	However,	in	order	to	be	actionable,	resource	managers	61 

need	information	on	management-specific	metrics,	such	as	the	start	date	of	the	rainy	62 

season	or	number	of	extreme	heat	days	in	the	summer	(Briley	et	al.	2015;	Roncoli	et	al.	63 

2009;	Moss	et	al.	2019;	Bornemann	et	al.	2019).	This	lack	of	focus	on	management-64 

specific	climate	science	can	preclude	its	use	in	adaptation	decisions,	as	even	translation	65 

or	communication	of	such	broader	information	cannot	move	the	science	“off	the	shelf”	66 

to	make	it	usable	(Moss	et	al.	2019;	Lemos	et	al.	2012;	Hackenbruch	et	al.	2017).			67 

The	literature	recognizes	the	importance	of	determining	specific	climatic	metrics	that	68 

could	be	most	applicable	for	specific	problems	(Hackenbruch	et	al.	2017;	Briley	et	al.	69 
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2015;	Bornemann	et	al.	2019).	But	this	task	is	often	assumed	to	be	solely	the	decision-70 

makers’	responsibility	(Briley	et	al.	2015),	and	is	not	considered	a	research	problem	per	71 

se.	However,	resource	managers	may	not	know,	a	priori,	the	types	of	climatic	metrics	72 

that	could	be	most	useful,	and	scientists	may	not	always	know	whether	they	can	73 

provide	information	on	decision-relevant	metrics	with	reasonable	skill	(Briley	et	al.	74 

2015;	Porter	and	Dessai	2017;	Lemos	et	al.	2012).	This	means	that	directly	asking	75 

decision-makers	to	explain	the	types	of	climate	information	they	need	is	rarely	76 

sufficient.	Therefore,	few	studies	have	systematically	identified	decision-relevant	77 

metrics	for	sectoral	adaptations	(Hackenbruch	et	al.	2017;	Vano	et	al.	2019;	Bornemann	78 

et	al.	2019).	‘Co-production’,	or	iterative	and	continual	engagement	between	scientists	79 

and	decision-makers,	is	often	suggested	as	a	means	to	enable	mutual	learning	and	80 

reconciliation	between	managers’	needs	and	scientific	priorities	(Lemos	2015;	Kirchhoff	81 

et	al.	2013a;	Weaver	et	al.	2014;	Vogel	et	al.	2016;	Kolstad	et	al.	2019).	It	can	thus	help	82 

to	identify	decision-relevant	climatic	metrics	that	are	also	tractable	for	modellers.	83 

That	being	said,	not	all	co-production	efforts	have	led	to	positive	outcomes	(Lemos	et	al.	84 

2018),	or	have	been	successful	at	understanding	and	responding	to	resource	managers’	85 

needs	(Lemos	et	al.	2018;	Porter	and	Dessai	2017).	The	success	of	co-production	is	86 

predicated	on	the	level	and	quality	of	interactions	between	(and	within)	different	87 

groups	(Porter	and	Dessai	2017;	Wall	et	al.	2017;	Kirchhoff	et	al.	2013b;	Mach	et	al.	88 

2019;	Lemos	et	al.	2018;	Meinke	et	al.	2006).	While	the	literature	provides	rich	89 

guidance	on	the	general	principles	and	prerequisites	for	successful	co-production	90 

(Hegger	et	al.	2012;	Meadow	et	al.	2015;	Lemos	and	Morehouse	2005;	Beier	et	al.	2017),	91 

there	is	a	dearth	of	empirically-grounded	guidance	on	co-production	processes	that	92 

have	worked	in	practice	(Djenontin	2018;	Lemos	et	al.	2018;	Parker	and	Lusk	2019).	93 
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Hence,	the	process	of	co-production	is	often	a	black	box;	there	is	no	clarity	on	the	types	94 

of	scientist-decision-maker	engagement	processes	that	can	be	expected	to	result	in	95 

effective	two-way	communications	and	to	enable	the	creation	of	usable	climate	science	96 

(Porter	and	Dessai	2017;	Mach	et	al.	2019;	Jagannathan	et	al.	2019a).		97 

In	this	paper	we	present	both	the	process	of,	and	outcomes	from,	a	case	of	co-98 

production,	Project	Hyperion,	that	(eventually)	led	to	the	identification	of	decision-99 

relevant	climatic	metrics	for	water	management	decisions.	As	a	response	to	calls	to	100 

detail	the	practice	of	‘how’	co-production	works	(Porter	and	Dessai	2017;	Lemos	et	al.	101 

2018;	Mach	et	al.	2019),	we	focus	this	paper	on	not	just	the	knowledge	outcomes	from	102 

the	effort	(i.e.	the	decision-relevant	metrics),	but	also	on	how	the	metrics	evolved	103 

iteratively	through	multiple	engagements	over	the	course	of	a	year.	The	rest	of	the	104 

paper	details	the	boundary	spanning	and	engagement	strategies	that	enabled	the	105 

project	to	overcome	institutional	and	epistemological	barriers,	and	allowed	a	shared	106 

understanding	across	professional	communities	to	emerge.		107 

Project	Hyperion	and	the	process	of	co-production	108 

Project	Hyperion	is	a	basic	science	project	that	aims	to	advance	climate	modelling	by	109 

evaluating	regional	climate	datasets	for	decision-relevant	metrics.	While	there	has	been	110 

an	explosive	growth	in	the	number	of	regional	climate	datasets	available	to	users,	there	111 

is	limited	understanding	of	the	credibility	and	suitability	of	these	datasets	for	use	in	112 

different	management	decisions	(Moss	et	al.	2019;	Barsugli	et	al.	2013;	Jones	et	al.	2016;	113 

Jagannathan	et	al.	2019b;	Vandermolen	et	al.	2019).	Hyperion	aims	to	address	this	need	114 

by	developing	comprehensive	assessment	capabilities	to	evaluate	the	credibility	of	115 
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regional	climate	datasets,	understand	the	processes	that	contribute	to	model	biases,	and	116 

improve	the	ability	of	models	to	predict	management	relevant	outcomes.		117 

Since	decision-relevance	is	a	core	motivation	for	the	project,	Hyperion	is	designed	on	118 

the	principles	of	co-production.	The	project	brings	together	scientists	from	nine	119 

research	institutions	with	managers	from	twelve	water	agencies	in	four	watersheds:	120 

Sacramento/San	Joaquin,	Upper	Colorado,	South	Florida,	and	Susquehanna.	In	addition,	121 

the	project	structure	explicitly	allows	for	both	the	groups	to	co-develop	the	science	plan	122 

and	research	questions,	in	addition	to	co-producing	the	science	itself.	The	scientists	123 

include	atmospheric	and	earth	system	scientists	as	well	as	hydrologists.	The	water	124 

managers,	depending	on	the	agency,	have	functions	including	planning,	operating	and	125 

managing	water	quality,	water	supply,	stormwater	management,	flood	control,	and	126 

water	infrastructure	design.	These	water	managers	have	high	levels	of	technical	127 

expertise	in	engineering,	hydrology	or	other	sciences,	and	were	purposefully	selected	128 

because	of	their	interest	in	the	project	concept	and	their	willingness	to	dedicate	time	to	129 

the	engagement	efforts.	In	addition,	the	project	team	for	Hyperion	includes	three	130 

dedicated	‘boundary	spanners’	(including	two	of	the	authors),	i.e.,	people	whose	131 

primary	role	is	to	facilitate	and	mediate	the	scientist-water	manager	boundary.		132 

In	this	paper	we	focus	on	Phase	1	of	the	project,	and	describe	how	decision-relevant	133 

metrics	in	each	of	the	study	regions	were	co-produced	by	this	group.		From	the	water	134 

managers’	perspective,	such	metrics	quantitatively	describe	climatic	phenomena	that	135 

are	directly	related	to	practical	management	problems;	changes	in	these	quantities	136 

would	necessitate	shifts	in	water	infrastructure	planning	and	operations.	From	the	137 

scientists’	perspective,	these	metrics	can	be	used	to	test	model	fidelity	for	decision-138 

relevant	phenomena	and	hence	push	model	development	and	scientific	inquiry	in	more	139 
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use-inspired	directions.	To	identify	these	metrics,	a	series	of	iterative	engagement	140 

methods	were	used.		Structured	engagement	methods	included	workshops,	remote	and	141 

in-person	focus-group	discussions,	and	quarterly	project	update	calls.	There	were	also	142 

continual	less-structured,	informal	conversations	between	scientists,	managers,	and	143 

boundary	spanners	over	phone	calls	or	emails.	Approval	from	Lawrence	Berkeley	Lab’s	144 

Human	Subjects	Committee	-	Institutional	Review	Board	was	obtained	for	key	145 

engagements.	The	timeline	of	engagement	activities,	along	with	goals	and	milestones	at	146 

each	stage,	is	presented	in	Fig.	1.		147 

The	role	of	boundary	spanners		148 

The	boundary	spanners	in	Project	Hyperion	had	varying	degrees	of	social	science,	149 

climate	science	and	adaptation	expertise;	they	also	had	prior	experience	in	co-150 

production	and	similar	participatory	research	activities.	It	is	generally	acknowledged	151 

that	boundary	spanners	are	necessary	for	the	translation	of	jargon	and	assumptions	152 

among	different	actors	and	across	epistemic	divides	(Bednarek	et	al.	2016b;	Kirchhoff	et	153 

al.	2013b;	Cash	et	al.	2003).	At	the	same	time,	the	literature	recognizes	that	this	role	is	154 

challenging	in	practice	(Bednarek	et	al.	2018;	Safford	et	al.	2017)	and	that	the	functions	155 

and	attributes	of	effective	boundary	spanning	are	not	well	understood	(Goodrich	et	al.	156 

2019;	Bednarek	et	al.	2016a).		157 

The	challenges	of	boundary	spanning	are	often	discussed	in	instances	where	actors	are	158 

resistant	to	crossing	epistemic	boundaries	or	“compromising”	their	expertise	(Cash	et	159 

al.	2003).	In	Hyperion,	most	of	the	water	managers	wanted	to	incorporate	climate	160 

change	information	in	their	decisions,	and	most	scientists	were	committed	to	161 

developing	decision-relevant	science.	This	collective	goodwill	notwithstanding,	several	162 

rounds	of	deliberations	were	needed	to	mediate	differences	in	incentives	and	priorities,	163 
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and	to	translate	the	water	managers’	needs	into	quantitative	metrics	and	scientific	164 

research	questions.	The	boundary	spanners	needed	to	actively	ensure	that	feedback	165 

from	both	groups	was	not	just	heard	and	documented,	but	also	incorporated	into	the	166 

overall	science	plan	for	the	project.		167 

The	mediation	of	the	scientist-manager	boundary	to	arrive	at	actionable	rainfall	metrics	168 

illustrates	these	tensions	and	also	their	eventual	resolution.	Several	of	the	managers	169 

wanted	information	on	Intensity	Duration	Frequency	(IDF)	curves	for	rainfall	events	170 

(Srivastava	et	al.	2019)	that	formed	the	basis	of	their	flood-related	decisions.	The	171 

scientists,	based	on	their	expertise	and	modelling	capabilities,	prioritized	metrics	such	172 

as	frequency	and	intensity	of	specific	storm	events	(e.g.	tropical	cyclones)	and	173 

associated	rainfall.	While	these	storm	metrics	were	related	to	decision-relevant	rainfall	174 

quantities,	they	were	often	one	step	‘upstream’	(in	both	the	hydrological	and	175 

metaphorical	senses)	of	what	the	water	managers	wanted	for	detailed	planning.	The	176 

upstream	metrics	represented	drivers	of	phenomena	of	interest	rather	than	the	177 

decision-relevant	phenomena	themselves.	Recognizing	this	tension,	the	boundary	178 

spanners	worked	with	the	group	to	co-create	a	shared	understanding	of	the	term	179 

‘metric’.	We	introduced	a	hierarchical	framework	that	distinguished	decision-relevant	180 

from	upstream	metrics,	illustrating	the	overlaps	and	linkages	between	the	two,	and	181 

showing	how	both	types	of	metrics	could	fit	within	the	project’s	larger	goals.	With	the	182 

explicit	linking	of	metric-types,	managers	could	better	appreciate	the	scientists’	focus	183 

on	upstream	storm	metrics	for	modelling	causal	processes	that	could	eventually	make	184 

IDF	predictions	more	accurate.	Scientists	saw	why	it	was	necessary	to	include	the	185 

metric	of	interest	to	managers,	i.e.	IDF	curves,	in	the	science	plan,	and	how	linking	their	186 

storm	metrics	with	IDF	results	added	to	the	novelty	and	impact	of	their	efforts.		187 
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This	and	similar	resolutions	were	highly	dependent	on	the	presence	of	a	boundary	188 

spanner	with	domain	expertise	in	climate	modelling.	While	the	literature	recognises	the	189 

importance	of	‘background	and	experience’	in	the	subject	matter	(Safford	et	al.	2017;	190 

Meadow	et	al.	2015;	Bednarek	et	al.	2016b),	there	is,	we	would	argue,	less	appreciation	191 

of	the	technical	expertise	required	to	execute	techno-scientific	translations	(Bednarek	192 

et	al.	2018).	For	our	project,	having	a	boundary	spanner	who	was	also	a	modeller	193 

proved	essential.	Given	the	aims	of	Hyperion,	many	boundary	functions	towards	the	194 

later	stages	of	the	project	needed	in-depth	(and	often	painful)	discussions	on	model	195 

parameters,	types	of	simulations,	decision-relevant	thresholds,	statistical	measures	of	196 

model	performance,	etc.	which	were	beyond	the	technical	capacities	of	the	non-197 

modeller	boundary	spanners	(Fig.	2).	In	hindsight,	we	believe	that	a	boundary	spanner	198 

with	expertise	in	water	management	could	have	been	equally	beneficial,	and	may	have	199 

augmented	our	eventual	list	of	metrics.	Overall,	we	found	that,	depending	on	the	nature	200 

of	what	is	being	co-produced,	boundary	spanners	need	considerably	higher	levels	of	201 

domain	expertise	than	is	generally	acknowledged	in	the	literature.		202 

Direct	and	indirect	approaches	to	‘making’	metrics	203 

A	common	approach	to	user	needs	assessments	in	conventionally-designed	as	well	as	204 

co-production	projects	is	to	directly	ask	decision-makers	for	the	types	of	information	205 

they	want	(Hudlicka	1996;	Briley	et	al.	2015).	This	approach	is	based	on	the	prevalent	206 

assumption	that	decision-makers	not	only	know	the	climatic	metrics	they	want,	but	are	207 

also	able	to	articulate	their	knowledge	in	response	to	direct	questions	(Hudlicka	1996).	208 

Neither	of	these	assumptions	is	true	for	every	engagement.	We	found	that	determining	209 

the	quantitative	details	of	decision-relevant	information	required	both	direct	and	210 

indirect	approaches.	We	did	explicitly	ask	managers	to	identify	any	metrics	for	which	211 
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they	required	projections,	and	this	direct	approach	was	partially	successful.	But	it	put	212 

the	onus	of	metric	identification	on	the	water	managers,	who	did	not	always	know	what	213 

to	ask	for	or	what	the	scientists	had	to	offer	by	way	of	quantification.	For	example,	the	214 

direct	approach	revealed	water	supply	and	floods	as	key	climate-related	management	215 

issues	in	California,	with	snowpack,	snowmelt,	streamflow,	dry	spells	and	rainfall	as	216 

hydroclimatic	phenomena	of	interest.	But	managers	were	not	used	to	translating	these	217 

phenomena	into	tractable	parameters	or	thresholds	(Briley	et	al.	2015;	Hackenbruch	et	218 

al.	2017).		219 

We	therefore	supplemented	the	direct	approach	with	an	indirect	approach	that	220 

assumed	that	relevant	knowledge	cannot	be	revealed	by	direct	questions,	but	needs	to	221 

be	extracted	through	more	open-ended	scenario	analysis	and	contextual	inquiry.	222 

Although	such	discussions	are	a	time-intensive	way	to	access	internal	knowledge	223 

structures	(Hudlicka	1996),	combining	direct	and	indirect	conversational	methods	have	224 

been	shown	to	be	an	effective	way	of	eliciting	user	needs	(Zhang	2007).	This	indirect	225 

approach	is	used	in	software	development	for	user	requirements	engineering	(Hudlicka	226 

1996;	Zhang	2007),	but	is	not	commonly	used	in	the	co-production	or	actionable	227 

environmental	science	literatures.	Partly	guided	by	research	on	tacitly-held	knowledge,	228 

and	partly	through	trial	and	error,	we	developed	four	indirect	strategies	that	enabled	229 

scientists	and	water	managers	to	collaboratively	identify	decision-relevant	metrics.		230 

1. Developing	hierarchical	frameworks:	There	was	often	confusion	among	scientists	and	231 

managers	on	how	specific	a	‘metric’	needs	to	be	to	have	an	unambiguous	232 

interpretation	from	a	modelling	perspective.	For	example,	in	the	initial	engagements,	233 

the	whole	group	understood	‘peak	streamflow’	or	'flooding'	to	be	potential	metrics.	234 

However,	when	modelling	methods	were	being	developed,	the	scientists	had	235 
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questions	as	to	what	‘peak’	might	mean	or	how	‘flooding’	was	defined	by	the	236 

managers.	Further	direct	questions	that	probed	the	managers	for	“more	specific”	237 

metrics	were	unsuccessful	in	eliciting	the	details	that	scientists	were	looking	for.	At	238 

the	same	time,	scientists	were	not	able	to	clearly	articulate	what	constituted	an	239 

unambiguous	metric.	To	resolve	this	stalemate,	the	boundary	spanners	asked	the	240 

scientists	to	provide	examples	of	what	might	constitute	a	specific	metric	for	their	241 

modelling	exercises.	The	group	then	decided	to	contextualize	metrics	by	developing	a	242 

hierarchical	framework:	a	management	issue	came	first,	then	the	hydroclimatic	243 

phenomena	related	to	the	issue,	then	the	aspects	of	each	phenomenon	that	were	of	244 

most	relevance	to	the	water	managers,	and	finally	a	tractable	metric	for	each	aspect	245 

(Fig.	3)	(see	also(Maraun	et	al.	2015)).	For	Hyperion,	the	hierarchy	represented	a	246 

logical	framework	that	helped	us	to	understand	that	peak	streamflow	could	have	247 

varied	interpretations	for	modelling;	it	could	be	daily	maximum	flow,	or	the	high	end	248 

of	streamflow	distribution,	or	values	above	certain	thresholds.	Each	interpretation	249 

represented	a	very	different	‘metric’	with	unique	results.	Through	the	framework	we	250 

collectively	understood	that	peak	streamflow	was	best	characterized	as	an	‘aspect’	of	a	251 

hydroclimatic	phenomenon,	and	one	step	ahead	of	being	an	unambiguous	metric,	252 

which	required	further	quantitative	details	describing	the	characteristics	of	the	peak	253 

that	were	important	to	managers.		254 

2. Starting	from	the	planning	challenge/goal	rather	than	the	science	question:	A	focus	on	255 

current	and	future	planning	challenges	or	goals	as	they	related	to	different	256 

hydroclimatic	phenomena	was	a	productive	path	towards	metric	identification.	For	257 

example,	when	asked	about	planning	goals	with	respect	to	streamflow	quantity,	some	258 

managers	suggested	that	the	aim	was	to	have	a	full	reservoir	on	July	1st.	Through	this	259 
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exchange	we	identified	cumulative	run-off	on	July	1	as	a	decision-relevant	metric.	260 

Another	discussion	centred	on	recent	climate-	or	weather-related	planning	challenges	261 

(such	as	Hurricane	Irma,	or	the	Oroville	dam	failure)	in	the	managers’	regions.	One	of	262 

the	managers	discussed	an	ice-jam	related	flooding	event	and	described	how	warm	263 

temperatures	and	heavy	rain	conditions	in	early	spring	caused	the	snow	to	melt	264 

rapidly,	leading	to	flooding.	This	prompted	a	collective	discussion	about	whether	265 

frequency	of	rain-on-snow	events	and	the	associated	run-off	could	be	an	actionable	266 

metric	to	help	anticipate	and	manage	such	events.	These	results	support	267 

recommendations	from	other	studies	that	also	suggest	starting	the	co-production	268 

process	from	the	management	goal	rather	than	from	a	scientific	“puzzle”	(Beier	et	al.	269 

2017;	Kolstad	et	al.	2019).		270 

3. Collaboratively	exploring	the	planning	relevance	of	new	models,	tools,	or	datasets:	It	is	271 

often	assumed	that	practitioners	are	mainly	interested	in	pragmatic	solutions	and	272 

may	be	less	open	to	exploring	novel	models	and	tools	(Vogel	et	al.	2016).	However,	in	273 

Hyperion,	collaboratively	and	critically	examining	whether	and	how	new	models,	274 

datasets	or	tools	could	be	relevant	to	managers’	contexts,	proved	to	be	a	productive	275 

strategy	for	identifying	metrics.	For	example,	one	of	the	scientists	sought	the	water	276 

managers’	opinion	on	a	new	type	of	satellite	data	on	terrestrial	water	storage	(TWS)	277 

that	had	the	potential	to	aid	in	flood/drought	prediction.	Managers	responded	that	278 

their	agencies	mainly	used	10-year	ground	water	(GW)	baseflow	as	a	key	metric	for	279 

drought	predictions,	but	that	it	was	not	easy	to	collect	data	for	computing	GW	280 

baseflow.	They	were	interested	in	alternatives	to	this	metric,	whereupon	the	scientist	281 

explained	that	new	findings	suggested	that	TWS	can	be	a	good	predictor	of	GW	flow	282 

(in	some	regions).	The	group	collectively	agreed	that	both	TWS	and	10-year	GW	283 
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baseflow	would	be	good	metrics,	and	that	TWS	would	be	explored	as	a	potential	proxy	284 

or	upstream	metric	to	GW	baseflow.		285 

4. Using	analogies	for	‘good’	metrics:	Finally,	some	of	the	new	metrics	identified	in	our	286 

project	came	from	discussions	of	other	‘good’	metrics.	For	example,	one	well-received	287 

set	of	metrics	was	visualized	through	the	‘Snow	Water	Equivalent	(SWE)	triangle’,	288 

which	uses	a	fitted	triangle	to	characterize	the	annual	cycle	of	snow	accumulation	and	289 

melt	(Rhoades	et	al.	2018).	The	SWE	triangle	represents	a	composite	of	six	metrics	of	290 

management	relevance:	peak	water	volume	and	timing,	snow	accumulation	and	melt	291 

rates,	and	the	lengths	of	the	accumulation	and	melt	seasons.	Each	metric	is	tractable	292 

as	well	as	decision-relevant,	and	the	triangle	itself	presents	a	visually	digestible	linear	293 

approximation	of	all	six	metrics	comprising	the	snow	cycle	(Rhoades	et	al.	2018).	The	294 

water	managers	thought	this	was	a	“nifty”	multi-metric	representation	as	it	allowed	295 

for	both	a	comprehensive	and	an	individual	examination	of	the	management-relevant	296 

components	of	seasonal	snow	dynamics.	Their	response	led	to	discussions	on	whether	297 

a	similar	set	of	metrics	describing	the	annual	cycle	of	rainfall	would	also	be	useful.	A	298 

new	composite	approach,	tentatively	termed	‘rainfall	geometry’	(to	signify	whatever	299 

geometric	figure	fits	the	annual	cycle	of	rainfall	in	a	given	location),	and	which	300 

includes	the	start	date	of	the	wet	season,	peak	rainfall,	and	length	of	the	wet	season,	301 

was	co-developed	as	a	promising	multi-metric	representation	of	key	management-302 

relevant	components	of	rainfall.	303 

Overall,	we	found	that	the	making	of	decision-relevant	metrics	needed	an	iteratively-304 

derived	mix	of	direct	and	indirect	engagement	approaches	to	capture	the	information	305 

needs	of	the	water	managers,	and	to	translate	them	into	tractable	quantitative	metrics	for	306 
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the	scientists.	Fig.	4	shows	the	evolution	of	two	decision-relevant	metrics	using	different	307 

direct	and	indirect	strategies.		308 

Decision-relevant	metrics	and	their	characteristics	309 

Table	1	presents	examples	of	the	metrics	identified	in	the	project	(Supplement	Table	1	310 

has	the	full	list	for	all	four	regions).	In	some	cases,	these	metrics	already	existed	in	other	311 

contexts	(such	as	in	engineering	or	hydrology	manuals),	but	had	not	been	recognized	as	312 

metrics	relevant	for	climate	modelling	prior	to	our	co-production	process.	We	also	313 

observed	that	not	every	identified	metric	mapped	onto	a	specific	management	decision.	314 

Some	metrics,	such	as	deviations	from	historical	mean	snowpack,	were	more	useful	for	315 

understanding	the	future	state	of	watersheds	than	for	making	decisions.	The	interest	in	316 

snowpack	shows	that	there	are	overlaps	between	upstream	and	decision-relevant	317 

metrics;	several	water	managers	were,	in	fact,	interested	in	understanding	upstream	318 

processes	in	addition	to	working	with	actionable	metrics	(Vano	et	al.	2019).		319 

Finally,	we	found	that	the	relevance	of	metrics	depends	on,	and	evolves	with,	the	320 

availability	of	climate	information.	In	regions	with	limited	availability	of	climate	data	321 

even	simple	climatic	metrics	such	as	monthly	or	annual	run-off	were	considered	322 

relevant	enough.	In	regions	with	more	information	such	simple	metrics	were	not	as	323 

useful;	managers	identified	more	detailed	metrics,	such	as	the	runoff	associated	with	324 

highest	snow	melt	rate,	or	maximum	daily	or	3-day	flow	volumes,	as	actionable.	An	325 

analysis	of	how	and	why	the	characteristics	of	decision-relevant	metrics	differed	among	326 

the	water	management	agencies	is	planned	for	the	next	phase	of	the	project.		327 
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Discussion	and	Conclusions	328 

In	this	paper,	we	open	up	the	black	box	of	co-production	and	document	in	detail	the	329 

strategies	that	enabled	(and	did	not	enable)	the	creation	of	decision-relevant	science.	330 

We	illustrate	how	co-production	works	in	practice	by	analyzing	the	numerous	back-331 

and-forth	collaborative	engagements	of	Project	Hyperion,	and	describing	how	the	332 

science	changed	and	evolved	during	the	process.	By	describing	how	climate	scientists	333 

and	water	managers	(eventually)	crossed	the	boundaries	of	both	mandate	and	334 

epistemology	to	co-produce	decision-relevant	metrics,	we	add	to	the	sparse	literature	335 

on	‘how	and	when’	co-production	works.	To	our	knowledge,	this	is	the	first	study	to	336 

document	in	detail	the	actionable	climatic	metrics	for	adaptive	water	management,	and	337 

the	co-production	processes	needed	to	arrive	at	such	metrics.	Our	outcomes	(i.e.	the	co-338 

produced	decision-relevant	metrics),	can	be	used	as	inputs	for	developing	actionable	339 

climate	science	for	adaptation	in	the	water	sector.	Our	learnings	on	engagement	340 

approaches	provide	co-production	scholars	with	insights	on	how	to	design	and	341 

implement	productive	scientist-decision-maker	interactions.		342 

We	found	that	identifying	problem-specific	climatic	metrics	is	even	more	iterative,	and	343 

needs	more	social	and	technical	negotiations,	than	is	generally	implied	in	the	literature	344 

promoting	co-production.	These	metrics	often	represent	new	scientific	directions	for	345 

the	scientists	as	well	as	new	ways	of	management	for	the	water	managers.	The	346 

commonly	used	direct	approach	to	identifying	decision-makers’	information	needs	was	347 

insufficient	for	getting	at	the	quantitative	details	of	climatic	metrics,	even	when	the	348 

decision-makers	had	high	levels	of	scientific	knowledge.	We	found	that	the	task	of	349 

translating	user	needs	into	quantitative	metrics	needs	the	expertise	of	both	resource	350 

managers	and	climate	scientists,	as	well	as	an	enabling	process	for	both	groups’	351 
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knowledge(s)	to	evolve.		Hence,	a	judicious	mix	of	direct	and	indirect	approaches	was	352 

needed	to	“make”	these	metrics.	The	indirect	methods,	in	particular,	revealed	the	353 

groups’	tacitly-held	knowledge	and	allowed	a	comprehensive	set	of	shared	learnings	to	354 

emerge.	Key	indirect	strategies	included	developing	a	hierarchical	framework	linking	355 

management	issues	with	actionable	metrics	and	upstream	phenomena;	starting	356 

discussions	from	the	planning	challenges	and	then	moving	to	the	model-specific	357 

metrics;	collaboratively	exploring	the	planning	relevance	of	new	models,	datasets	and	358 

scientific	findings	that	managers	did	not	yet	know	about;	and	using	analogies	of	good	359 

metrics	from	other	hydroclimatic	phenomena.	Eventually,	the	twin	functions	of	the	360 

metrics	--	of	being	decision-relevant	and	extending	model	capability	--		spoke	to	both	361 

the	decision-makers’	and	the	scientists’	priorities,	and	allowed	both	groups	to	co-exist	362 

within	the	project.	Additionally,	the	institutionalization	of	the	boundary	spanning	role,	363 

and	the	domain	expertise	of	at	least	one	boundary	spanner	(an	under-appreciated	364 

phenomenon	in	the	co-production	literature),	proved	to	be	crucial	for	effective	trans-365 

boundary	translation.		366 

Although	the	co-production	was	time-consuming,	the	richness	of	our	understanding	367 

came	from	analyzing	the	many	iterative	back-and-forth	engagements,	where	even	the	368 

processes	that	did	not	fully	work	were	essential	to	get	to	the	processes	that	did	369 

eventually	work.	Co-production	is	often	presented	as	an	outcome	in	itself,	rather	than	as	370 

a	means	to	an	end	(Lemos	et	al.	2018).	This	perspective	may	have	its	merits,	but	we	371 

argue	that	the	ability	to	achieve	desired	outcomes	is	quite	sensitive	to	how	the	co-372 

production	process	is	structured	and	implemented.	More	critical	assessments	of	specific	373 

co-production	processes	would	help	to	move	the	practice	forward	more	efficiently,	and	374 

to	meet	the	growing	need	for	actionable	climate	science	across	many	sectors	of	society.			 	375 
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Figure	Captions	List	530 

FIG.	1.	Co-production	process	and	timeline.	531 

FIG.	2.	Dialogue	between	Water	manager	(W)	and	Boundary	spanner	(B).		532 

FIG.	3.	Hierarchical	framework	with	examples.	533 

FIG.	4.	Examples	showing	the	evolution	of	decision-relevant	metrics.	534 
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Figures	and	Tables	539 

	540 

FIG.	1.	Co-production	process	and	timeline	summarising	key	engagement	activities	over	the	541 

course	of	a	year,	along	with	the	most	important	outcomes	at	each	stage	(depicted	by	the	blue	542 

document	icon).	‘Sci’	refers	to	Scientists,	‘WM’	refers	to	Water	Manager	and	‘HC	ph.’	refers	to	543 

Hydroclimatic	Phenomena.	For	details	of	each	of	these	activities	please	see	the	Supplement.	544 

There	was	constant	boundary	spanning	work	during	and	between	each	of	these	activities.	545 

	 	546 
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	547 

FIG.	2.	Dialogue	between	Water	manager	(W)	and	Boundary	spanner	(B)	showing	the	benefits	548 

of	having	a	modeller	as	a	“translator”	of	the	water	manager’s	description	of	information	needs	549 

into	quantitative	metrics	that	can	be	pursued	by	modellers.	550 

	551 

	 	552 
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	553 

FIG.	3.	Hierarchical	framework	with	examples.	(a)	illustrates	the	hierarchical	framework	554 

starting	from	a	management	issue	and	ending	in	the	metrics.	(b)	and	(c)	are	examples	of	metrics	555 

and	how	they	fit	within	the	framework.	The	hierarchy	starts	with	the	‘Issue’	or	topic	of	556 

management	relevance	in	the	region	(e.g.	Flooding),	and	moves	to	the	‘Hydroclimatic	557 

Phenomenon’	related	to	the	issue	(e.g.	Precipitation	is	a	hydroclimatic	phenomenon	related	to	558 

the	issue	of	Flooding),	and	then	to	the	‘Aspect	of	the	Phenomenon’	that	is	of	specific	interest	for	559 

the	management	decision	(e.g.	Extreme	precipitation	is	the	aspect	of	precipitation	that	is	of	560 

specific	management	interest).	Finally,	the	hierarchy	yields	the	actual	‘Decision-relevant	metric’,	561 

which	refers	to	a	quantity	that	has	potential	use	for	the	water	managers	and	has	an	562 

unambiguous	formula	or	algorithm	that	can	be	applied	to	both	observation-based	data	and	563 

model	outputs	(e.g.	Probable	Maximum	Precipitation	(PMP)	is	a	metric	related	to	extreme	564 

precipitation).	We	also	identified	upstream	metrics	that	describe	phenomena	hypothesized	to	565 

be	important	drivers	of	the	decision-relevant	phenomena	(e.g.	Intensity	of	tropical	storms	of	566 

certain	durations	or	return	periods	are	an	upstream	driver	of	PMP).				567 

	568 

	 	569 
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	570 

FIG.	4.	Examples	showing	the	evolution	of	decision-relevant	metrics.	(a)	shows	the	evolution	of	571 

the	metric	that	represents	the	3-year	critical	duration	of	October-March	high	flows	at	a	10-year	572 

recurrence	interval.	The	initial	direct	identification	approach	gave	a	broad	understanding	of	the	573 

importance	of	runoff	for	nutrients	and	sediments,	and	then	a	discussion	of	runoff-based	574 

planning	led	to	identifying	hydrologic	extremes	as	one	of	the	important	components	of	runoff.	575 

Using	the	hierarchy	(Fig.	3),	we	came	to	understand	that	‘extremes’	were	an	‘aspect	of	576 

phenomenon’,	and	we	probed	further	to	find	that	extremes	actually	meant	flows	above	certain	577 

thresholds.	We	derived	the	final	unambiguous	metric	at	the	next	iteration	where	we	578 
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interrogated	the	types	of	exceedance	thresholds	that	impact	water	quality	management	in	the	579 

region.	(b)	shows	the	making	of	a	rainfall	metric.	First,	the	direct	approach	highlighted	that	580 

changes	in	rainfall	patterns	were	an	important	challenge	for	the	region.	In	the	next	2	iterations,	581 

which	also	used	direct	engagements,	we	identified	the	specific	aspects	of	rainfall	that	were	of	582 

importance.	Finally,	with	the	analogy	of	the	‘good	metrics’	of	the	SWE	triangle,	we	identified	583 

“Rainfall	Geometry”	as	a	promising	concept	for	additional	decision-relevant	metrics.		584 

	 	585 
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Table.	1.	Examples	of	decision-relevant	metrics	for	each	region,	highlighting	management	586 

issues,	hydroclimatic	phenomena,	aspect	of	phenomena	and	then	each	decision-relevant	metric.	587 

‘CA’	refers	to	the	Sacramento/San	Joaquin	watershed,	‘CO’	is	Upper	Colorado,	‘FL’	is	South	588 

Florida,	and	‘SQ’	is	Susquehanna.	The	last	column	also	describes	some	of	the	potential	decisions	589 

or	uses	for	these	metrics	that	were	identified	by	the	case	study	water	managers.	Supplement	590 

Table	1	has	the	full	list	for	all	four	regions.	591 

Region	 Issue	
Hydroclimatic	

Phenomenon	

Aspect	of	

Phenomenon	

Decision-relevant	

Metric	
Decision/Use	

CA	
Water	

Supply	
Snowpack	

Annual	cycle	of	

snow	

accumulation	

and	melt	

Snow	Water	

Equivalent	(SWE)	

triangle	(Rhoades	

et	al.	2018)	-	Peak	

snow	(amount	and	

timing),	and	its	

relationship	with	

average	snow-	

accumulation	and	-

melt	rates,	and	

timing	and	length	

of	accumulation	

and	melt	seasons		

On-stream	reservoir	

management,	and	

understanding	future	

streamflow	characteristics.	

Shape	of	the	triangle	shows	

the	changing	dynamics	of	

the	snow	season,	and	what	

to	expect	in	terms	of	runoff	

timing	and	amounts.	

CA	 Flooding	 Streamflow	
Peakflow	

{Pulse	events}	

Frequency	of	Rain-

on-snow	events	

and	magnitude	of	

associated	run-off	

Reservoir	operations	and	

flood	management.	

CA	
Water	

Supply	
Snowpack	

Inter-annual	

Variability	in	

Snowpack	

Deviations	from	

historical	mean	in	

SWE,	Snowpack	

and	Snowmelt	

(amount	and	

timing)	

Multi-year	water	supply	

planning	and	drought	

preparedness.		

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0296.1.



31 

CO	
Water	

Supply	
Streamflow	

Seasonal	

Streamflow	

amount	(in	

snowmelt	

season)	

Cumulative	run-off	

on	July	1	and	

August	1	

Annual	water	supply	

planning	for	the	year	done	

based	on	July	1	or	August	1	

reservoir	level	estimates	

(depending	on	the	

reservoir).	

CO	 Floods	 Streamflow	

Seasonal	

Streamflow	

amount	(in	

snowmelt	

season)	

%	of	average	

annual	inflow	for	

Apr-July	

Reservoir	management	-	

this	metric	is	an	input	into	

some	reservoir	operations	

models.	

CO	
Water	

Supply	
Streamflow	

Low-end	

Streamflow	

7-day	10	year	low	

flows	

Water	quality	management	

(issuing	discharge	permits),	

and	water	supply	planning	

during	dry	years	

(determining	permit	limits	

for	water	withdrawals).	

FL	 Flooding	 Rainfall	
Extreme	

Rainfall	

Intensity	Duration	

Frequency	or	IDF	

curves,	specifically,	

1-day,	3-day	and	up	

to	7-day	rainfall	

events,	for	10,	25,	

50	and	100	year	

frequency	

intervals.	

To	calculate	applicable	

discharge	rates	for	different	

storm	water	management	

infrastructure.	Design	

criteria	used	for	drainage	

and	flood	protection	are	in	

terms	of	IDFs.	In	other	

words,	designing	of	

standard	engineering	

practices	for	infrastructure.		

FL	 Flooding	 Rainfall	
Extreme	

Rainfall	

Probable	maximum	

precipitation.	For	

1-day,	3-day	and	

maybe	up	to	7-day	

events	

Large	storage	

infrastructure	design	(like	

high	dams).	

FL	
Water	

Supply	
Rainfall	

Variability	in	

Rainfall	

Rainfall	anomalies	

at	Monthly	time	

scales	

Water	supply	planning,	and	

drought	monitoring	
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SQ	
Water	

Supply	
Streamflow	 Peakflow	

10-	year	frequency	

3-year	duration	

high	flows	for	Oct-

March		

Water	quality	management	

in	terms	of	monitoring	

Chesapeake	Bay	water	

quality	standards.	

SQ	 Flooding	 Streamflow	

Average/	

cumulative	

flows	

Mean	annual	flow	

and	harmonic	

mean	flow	

Water	supply	planning,	for	

monitoring	passby	flows	

and	conservation	releases	

associated	with	water	

withdrawal	permits.		Water	

quality	management	for	

calculating	design	flows	for	

effluent	limitations	based	

on	water	quality	criteria.	

SQ	
Water	

Supply	
Streamflow	

Low-end	

Streamflow	

7-day10-year	low	

flow	

Water	quality	management	

in	terms	of	wastewater	

assimilation	standards	for	

discharge	permits.	Water	

supply	planning	in	terms	of	

passby	flows	or	

conservation	releases	for	

water	withdrawal	permits.	
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